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Abstract. We have studied by means of Monte-Carlo simulation and exact finite-size analysis, the spin-1
Blume Capel model with Glauber and Kawasaki dynamics. The Kawasaki spin-exchange process transfers
energy into the system from an external source. Some phase diagrams of the model are presented. For
some parameter values, the system displays a kind of self-organization phenomenon within the disordered
phase.

PACS. 75.10.Hk Classical spin models – 75.10.Nr Spin-glass and other random models – 64.60.Ht Dynamic
critical phenomena

1 Introduction

The stochastic evolution of a spin system towards equi-
librium can be studied using the Glauber single spin-
flip dynamics [1] as well as multiple spin-flip processes.
The latter dynamics appears natural since it can some-
times lead systems to showing the interesting phenomenon
of self-organization [2]. Kinetic Ising systems may there-
fore be helpful in understanding, at the microscopic
level, the occurrence of dissipative structures observed in
physical-chemical reactions and in fluid dynamics [2,3].
An instructive case of self-organization phenomenon in
a kinetic ferromagnetic Ising model has been recently
reported by Tome and de Oliveira [4]. These authors
studied within the dynamical pair approximation, a sys-
tem which was linked to a heat bath whose dynamics is
the Glauber spin-flip process and subject to an external
source of energy. The flow of energy into the system is
governed by a Kawasaki-type spin-exchange process [5].
The main result derived is the possible paramagnetic-
antiferromagnetic phase transition beyond the usual equi-
librium ferromagnetic-paramagnetic transition. Their sys-
tem self-organizes in the disordered phase at high energy
flux. By using Monte Carlo (MC) simulations, Grandi
and Figueiredo [6] confirmed the occurrence of the phe-
nomenon in the model but found a phase diagram which
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was different from the one obtained by pair approxima-
tion. In the kinetic antiferromagnetic Ising model case, no
such self-organization is found [7]. However, Ma et al. [8]
have shown recently that a self-organization phenomenon
may occur if the spin-exchange rate depends on the
strength of the exchange between nearest-neighbour spins.

In this paper, we specifically consider the same prob-
lem with a different model, in particular the antiferro-
magnetic spin-1 Blume-Capel model [9,10] whose Hamil-
tonian comprises a single-ion anisotropy. The equilibrium
version of this model and its generalization, the Blume-
Emery-Griffiths model, [11] have been extensively stud-
ied and present a rich variety of critical and multicritical
behaviour. The spin-1 Ising systems appear more inter-
esting since they can describe order-disorder transitions
and the crystallization of binary alloys. They have been
solved by means of different methods: mean-field approx-
imation [12], MC finite-size scaling methods [13], etc. In
the present non-equilibrium model, the system is subject
to the same competing Glauber and Kawasaki dynamics
described in reference [4]. We are mainly interested in the
effect of the crystal-field on the phase diagrams and the
nature of the phase boundaries. The system time evolu-
tion is described by a master equation which can be solved
exactly for small-size versions of the model. However, the
corresponding steady-state distribution probability is not
of great importance since it cannot give an indication
of the large scale properties of the model. Nevertheless,
using the dynamical transition matrix eigenvalue statis-
tics, some general trends of the model can be conjectured.
Larger systems are investigated by MC simulations. Our
study does not show any self-organization similar to that
reported in reference [4]. For some model parameters, the
system tends to organize itself in the same antiferromag-
netic phase within the disordered phase. This behaviour
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seems, however, to become unimportant with increasing
system size. Accordingly, our phase diagrams do not in-
clude any related features, although an indication exists
that in the thermodynamic limit the phenomenon may
not disappear. For the zero-field splitting (anisotropy)
D/J ≤ 1, the antiferro-paramagnetic transition is of the
second order, independent of the intensity of the external
flux. For values of D/J > 2, the transition is essentially
of the first order in the temperature-external flux phase
diagram. Between these two limiting values, the second
order transition line ends at a tricritical point.

The paper is organized as follows. In Sections 2 and 3,
the model and its dynamics are specified. In Section 4,
some properties of the model are fitted from the transition
matrix associated with the master equation on small sam-
ples. In Section 5 the simulation algorithm is described.
Section 6 is devoted to MC results.

2 The model Hamiltonian

The model Hamiltonian is:

H = J
∑
〈i,j〉

SiSj +D
∑
i

S2
i . (1)

Here, the local spin variables are restricted to taking the
values ±1, 0. The first term describes the antiferromag-
netic coupling (J > 0) between neighbouring spins i and
j. The second term describes the single-ion anisotropy.
This model Hamiltonian has been well-studied in the lit-
erature by means of different methods [10,11]. In the
temperature-anisotropy phase diagram, the ordered phase
is separated from the disordered paramagnetic phase by
a phase boundary which changes nature at a tricritical
point. Analysis of the ground states and mean-field cal-
culations show that the first order transition line ends at
zero at D/J = 2 for a two-dimensional system [10].

In the present work, the system is driven out of equi-
librium by an external source of energy and is subject to
two competing dynamics: the Glauber spin-flip process [1]
which simulates the contact of the system with a heat bath
at a given absolute temperature and the Kawasaki spin-
exchange [5] which simulates the flow of external energy
into the system.

3 Kinetic equation of the model

At equilibrium as in dynamics, a statistical time-
dependent weight P (σ, t) is associated with each lattice
configuration σ at time t. The dynamics of the model be-
come specified when one fixes the transition rate W (σ, σ′)
through a kinetic equation:

dP (σ, t)
dt

=
∑
σ′

(−W (σ, σ′)P (σ, t) +W (σ′, σ)P (σ′, t)).

(2)

This relation expresses that the rate of change of P (σ, t) is
given by the difference between the flux into σ from other
configurations σ′ and the flux out of σ to other configu-
rations. These transitions occur in the model by the two
competing Glauber and Kawasaki dynamics.

The Glauber move on a single spin i has the transition
probability per unit time and per site:

wi(σ, σ′) =
p

2
min(1, exp(−∆Ei/kT )), (3)

where ∆Ei denotes the change of the system energy asso-
ciated with the spin-flip process. The prefactor 1/2 arises
from the fact that two final states are possible in the spin-
flip move. The Kawasaki spin-exchange process on neigh-
bouring sites (i, j), only occurs when energy can flow into
the system. It has the transition rate:

wij(σ, σ′) = 1− p. (4)

The global transition rate W (σ, σ′) can be rewritten in
the form:

W (σ, σ′) = WG(σ, σ′) +WK(σ, σ′), (5)

where

WG(σ, σ′) =
∑
i

wi(σ, σ′) (6)

is the sum of the rates of transitions by spin-flip on sites
i, leading σ to σ′ and

WK(σ, σ′) =
∑
〈i,j〉

wij(σ, σ′). (7)

Denoting the set of lattice configuration probabilities
P (σ, t) at time t by P (t), then the system time evolution
is given by the equation:

d
dt
P (t) = M P (t) (8)

where M denotes the Glauber-Kawasaki (GK) non-
equilibrium transition matrix for the model.

4 Analysis of the GK transition matrix

4.1 Subgroup classification of system configurations

We could only study very small systems of about 8 sites.
The procedure we use is that of subgroup classification
of system configurations. The reader should refer to ref-
erences [14,15] for more details on the method. In gen-
eral, the configurations of a table L × L′ are classified
into groups subdivided into subgroups where configura-
tions only differ by translation. Here we have only one
group and L and L′ are chosen even due to the antiferro-
magnetic coupling. Periodic boundary conditions are im-
posed on the systems. By means of this procedure, we
find 855 subgroups for the system 2× 4 and 27 subgroups
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for the system 2 × 2. One can remark that the number
of subgroups rapidly increases with system size. During
the table evolution, the system configurations run from
one subgroup to another in the group due to the model
ergodicity within the group. Such behaviour enables one
to define a transition matrix between subgroups. For the
2× 4 system, the matrix is 855× 855. The eigenstates as-
sociated to the eigenvalue λ = 0 correspond to the steady
state distribution which might be used to compute physi-
cal quantities. The other eigenvectors are not probability
distributions. The present finite size study is far from the
thermodynamic limit and cannot help reasonably to fit
the large scale properties. Nonetheless, some insight into
the general behaviour of the model is expected from the
eigenvalue statistics.

4.2 Eigenvalue statistics

Both positive and negative eigenvalues are found. The
three largest eigenvalues are always positive and non-
degenerate. The eigenvalues increase for increasing model
parameters. This may indicate an increase of disorder in
the system. With decreasing temperature, the density of
eigenvalues close to zero increases. Of particular impor-
tance is the separation ∆ = λ1 − λ2 between the two
largest eigenvalues of the GK matrix. We find that ∆(T )
is non-exponential for given parameters D and q = 1− p.
By following Melin’s work [16] on the Ising model with
Glauber dynamics, one can conclude that we are in fact
in the presence of a system with broken symmetry. Order-
disorder transition is then possible in the model. In the
same framework, ∆(T ) may decrease with system size and
reach the value zero in the thermodynamic limit if T is
less than the critical temperature Tc. Above Tc, it must
be finite. In the present mixed dynamics, we find that the
decrease of ∆ with system size is only possible below some
temperature T 0

c (see points A, B, C in Fig. 1 where curves
∆ of two samples of different sizes meet). The temperature
T 0

c is the finite-size analog of the real critical temperature
Tc. Numerical simulations show (see Sect. 6) that T 0

c is
in fact somewhat close to Tc for very small external flux
q and relatively large value of D/J . The behaviour of Tc

is reflected in that of T 0
c . Accordingly, from Figure 1, we

believe that Tc must decrease with increasing model pa-
rameters. These features of the model also appear when
one uses the Nightingale condition often considered in the
transfer matrix finite-size scaling method [17–19] by tak-
ing the correlation length of the system as related to the
ratio λ1/λ2. The quantity ∆′(T ) = λ1−λ3 where λ3 is the
third largest eigenvalue, is very sensitive to the existence
of a second order transition. In fact in the neighbourhood
of the “transitions” shown in Figure 1, the profile of ∆′(T )
somewhat changes for the 2×4 system. Such a feature has
also been found in Melin’s work [16]. Another interesting
behaviour is that of the separation s of consecutive eigen-
values. We give an example in Figure 2 at T/J = 0.1
for the 2× 4 system. n(s) gives the number of eigenvalue
spacing s in consecutive intervals of width ∆s = 0.002.
Our calculations show that there is no normalization of
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Fig. 1. Curves ∆(T ) = λ1− λ2 for two systems: 2× 2 (a) and
2 × 4 (b) and for different model parameters. Curves which
cross at A, B, C correspond respectively to the parameters
D/J = 1.7, q = 0.01; D/J = 1.9, q = 0.01; D/J = 1.9,
q = 0.02.
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Fig. 2. Number of eigenvalue spacing in consecutive intervals
of width ∆s = 0.002. The parameters are: D/J = 1.9, T/J =
0.1, q = 0.02.

the eigenvalue spacing s and n(s) which may give an ex-
ponential form to the whole curve (Poisson distribution).
We therefore think that the eigenvalue spacing statistics
of the GK matrix are not universal since the profile of
the curve just changes slightly with other parameter val-
ues. The latter feature of the curve is due to the fact that
spins in the 2×4 system, do not experience all the possible
environments which exist in large systems.

5 Monte Carlo simulation

The method appears simpler than the difficult problem
of subgroup classification. We use the Monte Carlo sim-
ulation procedure of reference [7]. Systems with different
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sizes, with periodic boundary conditions, are considered.
We often start from different initial configurations to en-
sure that the final state (steady state) obtained is correct.
The simulation is propagated using the following proce-
dure. A lattice with even size is considered. For given
parameters of the model, a lattice site i is first randomly
chosen. Then one chooses a random number r1 between
0 and 1. If p ≥ r1, a spin-flip process is attempted and
another random number r2 (compared to 0.5) is chosen
to decide which state the spin may take among the two
others. The move is realized with probability wi. If p < r1,
spin-exchange of site i is attempted with a randomly se-
lected neighbouring site j of i with probability 1− p. The
latter move is only accepted when ∆Eij > 0. The number
of Monte Carlo steps (MCS) needed to reach the steady
state depends on the model parameters and the system
size considered. Typically, we use from 104 to 105 MCS
for size L ranging from 16 to 40. The physical quantity
of interest used to locate the phase boundary is the stag-
gered magnetization (order parameter) and its variance.
The order parameter is estimated by a time-averaging pro-
cedure [17]:

|M | = 〈|Ms|〉 =
1
NS

∑
c

∑
i

δiSi(c), (9)

where i runs over the lattice sites and δi = +1(δi = −1)
for sites of even (odd) sublattice, respectively. The vari-
able c runs over the configurations obtained to update the
lattice over one sweep of the entire N spins of the lat-
tice (one Monte Carlo Step, MCS), counted after the the
system reaches thermal equilibrium. S is the number of
MCS. For L = 40, about 104 sweeps of the lattice are
always initially discarded to set this thermal equilibrium.
The fluctuations in Ms are given by the reduced staggered
magnetic susceptibility:

χ
M

= N(〈M2
s 〉 − 〈|Ms|〉2). (10)

Other quantities that we control are the fourth-order cu-
mulant associated with the order parameter and the re-
duced specific heat.

6 Results and discussion

We study the steady states of the system as a function of
the model parameters. These states are characterized by
the constancy of the relevant thermodynamic quantities
outlined above. Typically three types of stationary states
are expected: the paramagnetic (P), the ferromagnetic (F)
and the antiferromagnetic (AF) phases. In the disordered
P-phase, it is possible to get phase segregation or self-
organization. In the small flux q region, Glauber dynamics
dominates the whole dynamics. One expects the system to
show an order similar to that of equilibrium: AF phase at
low q and P-phase otherwise. At large q, the Kawasaki pro-
cess dominates and the system is in a high energy state

(disordered phase). Between these two states, there is a
phase transition which can be of first or second order. In
our calculations, the first order transition occurs when the
single-ion anisotropy is non-zero and takes large values. It
appears at relatively low temperature. To determine it,
we first increase the number of MC steps to locate typical
hysteresis in the phase diagrams. For size L = 40, this
number is typically set to 105. Then, we use the mixed
start technique in which the upper half of the lattice is
initialized to the T = 0 configuration expected on one
side of the first order boundary (e.g., m1 = 1, m2 = −1)
and the lower half of the lattice initialized to the con-
figuration expected on the other side of the lattice (e.g.,
m1 = 1, m2 = 1). The order parameters m1 and m2 de-
note the average magnetization of the two sublattices. For
D/J = 0, the system goes continuously from the antiferro-
magnetic phase to the disordered phase when the external
flux q increases (Fig. 3a) and no hysteresis behaviour is
seen in the order parameter. The whole transition line is
of second order. The full dynamics in this case respects
the nature of the phase boundary found in equilibrium at
zero anisotropy. When D/J is large, but less than 2, the
second order transition line and the first order line meet at
a tricritical point (see Fig. 3b). For the 40×40 system an-
alyzed, this point has the coordinates Tc/J ' 0.56, qc ' 0
for D/J = 1.98; Tc/J ' 0.49, qc ' 0.006 for D/J = 1.9
and Tc/J ' 0.345, qc ' 0.0214 for D/J = 1.7. Concerning
the case D/J = 1.98, the phase boundary is almost of
first order (see Fig. 3b, where the circle is the unique sec-
ond order transition point). Our results show that there
exists a line which passes by these tricritical points (tri-
critical line). Below the transition lines, the Neel order
prevails. Above, we have the P-phase. However, we find
some anomalous behaviours of the AF order parameter in
the disordered phase and this seems to be the exciting re-
sult of the present work. In fact, from Figure 3c, it emerges
that although the order parameter is almost zero, it shows
a maximum at fixed parameters q and D for varying tem-
perature. In that region we think that the competition
between the two dynamics is giving rise to some instabil-
ity which seems to indicate the presence of an AF-phase
inside the disordered phase. This is in fact a sort of lo-
cal self-organization which has not been seen in the AF
spin-1/2 Ising model studied with the same dynamics [7].
Also the specific heat and the susceptibility (see Fig. 3d)
show a peak in the region, peak which does not disappear
or diverge with increasing system size. At fixed T , D and
varying q = 1 − p, no anomalous behaviour is however
found for the order parameter (Fig. 4a) and its variance
(Fig. 4b) around the maximum in Figure 3c. A direct in-
vestigation of the lattice morphology in that region shows
sparse AF-phase clusters on the lattice. Around the max-
imum in Figure 3c, these clusters coalesce and percolate
across the lattice. Through the phase diagram, we find
that in the disordered P-phase, the F-order parameter be-
comes larger than the AF order parameter at very high
temperature although both are almost zero. At fixed q
and D/J , this parameter increases from T/J ' 0, reaches
a maximum and then decreases when T/J →∞.
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7 Conclusion

In this paper, we report results on the spin-1 Blume-Capel
model studied with competing Glauber and Kawasaki dy-
namics. A local self-organization phenomenon is found
within the disordered phase for some model parameters.
One open question is how the AF-phase clusters found in
the P phase coarsen during the simulation. Another prob-
lem which is under investigation is the Ising model spin
3/2 in the antiferromagnetic coupling case. This model
is prolific at equilibrium and we expect it to display,
when studied with competing dynamics, interesting self-
organization phenomena.
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